End of training
Browse files- README.md +152 -0
- config.json +144 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
- runs/Jan21_05-14-20_jupyter-demo08/events.out.tfevents.1737436491.jupyter-demo08.501.0 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/segformer-b1-finetuned-ade-512-512
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: my-fine-tuned-model
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# my-fine-tuned-model
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the segments/sidewalk-semantic dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.1999
|
22 |
+
- Mean Iou: 0.1706
|
23 |
+
- Mean Accuracy: 0.2116
|
24 |
+
- Overall Accuracy: 0.7740
|
25 |
+
- Accuracy Unlabeled: nan
|
26 |
+
- Accuracy Flat-road: 0.8915
|
27 |
+
- Accuracy Flat-sidewalk: 0.9438
|
28 |
+
- Accuracy Flat-crosswalk: 0.0
|
29 |
+
- Accuracy Flat-cyclinglane: 0.5087
|
30 |
+
- Accuracy Flat-parkingdriveway: 0.0048
|
31 |
+
- Accuracy Flat-railtrack: nan
|
32 |
+
- Accuracy Flat-curb: 0.0
|
33 |
+
- Accuracy Human-person: 0.0
|
34 |
+
- Accuracy Human-rider: 0.0
|
35 |
+
- Accuracy Vehicle-car: 0.8715
|
36 |
+
- Accuracy Vehicle-truck: 0.0
|
37 |
+
- Accuracy Vehicle-bus: 0.0
|
38 |
+
- Accuracy Vehicle-tramtrain: 0.0
|
39 |
+
- Accuracy Vehicle-motorcycle: 0.0
|
40 |
+
- Accuracy Vehicle-bicycle: 0.0
|
41 |
+
- Accuracy Vehicle-caravan: 0.0
|
42 |
+
- Accuracy Vehicle-cartrailer: 0.0
|
43 |
+
- Accuracy Construction-building: 0.9030
|
44 |
+
- Accuracy Construction-door: 0.0
|
45 |
+
- Accuracy Construction-wall: 0.0009
|
46 |
+
- Accuracy Construction-fenceguardrail: 0.0
|
47 |
+
- Accuracy Construction-bridge: 0.0
|
48 |
+
- Accuracy Construction-tunnel: nan
|
49 |
+
- Accuracy Construction-stairs: 0.0
|
50 |
+
- Accuracy Object-pole: 0.0
|
51 |
+
- Accuracy Object-trafficsign: 0.0
|
52 |
+
- Accuracy Object-trafficlight: 0.0
|
53 |
+
- Accuracy Nature-vegetation: 0.9444
|
54 |
+
- Accuracy Nature-terrain: 0.7861
|
55 |
+
- Accuracy Sky: 0.9161
|
56 |
+
- Accuracy Void-ground: 0.0
|
57 |
+
- Accuracy Void-dynamic: 0.0
|
58 |
+
- Accuracy Void-static: 0.0
|
59 |
+
- Accuracy Void-unclear: 0.0
|
60 |
+
- Iou Unlabeled: nan
|
61 |
+
- Iou Flat-road: 0.5823
|
62 |
+
- Iou Flat-sidewalk: 0.8174
|
63 |
+
- Iou Flat-crosswalk: 0.0
|
64 |
+
- Iou Flat-cyclinglane: 0.4884
|
65 |
+
- Iou Flat-parkingdriveway: 0.0048
|
66 |
+
- Iou Flat-railtrack: nan
|
67 |
+
- Iou Flat-curb: 0.0
|
68 |
+
- Iou Human-person: 0.0
|
69 |
+
- Iou Human-rider: 0.0
|
70 |
+
- Iou Vehicle-car: 0.6619
|
71 |
+
- Iou Vehicle-truck: 0.0
|
72 |
+
- Iou Vehicle-bus: 0.0
|
73 |
+
- Iou Vehicle-tramtrain: 0.0
|
74 |
+
- Iou Vehicle-motorcycle: 0.0
|
75 |
+
- Iou Vehicle-bicycle: 0.0
|
76 |
+
- Iou Vehicle-caravan: 0.0
|
77 |
+
- Iou Vehicle-cartrailer: 0.0
|
78 |
+
- Iou Construction-building: 0.5862
|
79 |
+
- Iou Construction-door: 0.0
|
80 |
+
- Iou Construction-wall: 0.0009
|
81 |
+
- Iou Construction-fenceguardrail: 0.0
|
82 |
+
- Iou Construction-bridge: 0.0
|
83 |
+
- Iou Construction-tunnel: nan
|
84 |
+
- Iou Construction-stairs: 0.0
|
85 |
+
- Iou Object-pole: 0.0
|
86 |
+
- Iou Object-trafficsign: 0.0
|
87 |
+
- Iou Object-trafficlight: 0.0
|
88 |
+
- Iou Nature-vegetation: 0.7592
|
89 |
+
- Iou Nature-terrain: 0.7159
|
90 |
+
- Iou Sky: 0.8430
|
91 |
+
- Iou Void-ground: 0.0
|
92 |
+
- Iou Void-dynamic: 0.0
|
93 |
+
- Iou Void-static: 0.0
|
94 |
+
- Iou Void-unclear: 0.0
|
95 |
+
|
96 |
+
## Model description
|
97 |
+
|
98 |
+
More information needed
|
99 |
+
|
100 |
+
## Intended uses & limitations
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Training and evaluation data
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training procedure
|
109 |
+
|
110 |
+
### Training hyperparameters
|
111 |
+
|
112 |
+
The following hyperparameters were used during training:
|
113 |
+
- learning_rate: 6e-05
|
114 |
+
- train_batch_size: 4
|
115 |
+
- eval_batch_size: 4
|
116 |
+
- seed: 42
|
117 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
118 |
+
- lr_scheduler_type: linear
|
119 |
+
- num_epochs: 2
|
120 |
+
|
121 |
+
### Training results
|
122 |
+
|
123 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
124 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
125 |
+
| 3.0054 | 0.1 | 20 | 2.8502 | 0.0610 | 0.1050 | 0.5551 | nan | 0.5630 | 0.9504 | 0.0190 | 0.0010 | 0.0022 | nan | 0.0020 | 0.0004 | 0.1899 | 0.0446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | 0.1945 | 0.0765 | 0.0374 | 0.0101 | 0.0 | nan | 0.0174 | 0.0025 | 0.0 | 0.0 | 0.9743 | 0.0000 | 0.2628 | 0.0 | 0.0081 | 0.0011 | 0.0 | 0.0 | 0.3847 | 0.7107 | 0.0132 | 0.0007 | 0.0022 | 0.0 | 0.0015 | 0.0004 | 0.0425 | 0.0434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | 0.1626 | 0.0084 | 0.0214 | 0.0082 | 0.0 | 0.0 | 0.0130 | 0.0021 | 0.0 | 0.0 | 0.4534 | 0.0000 | 0.2590 | 0.0 | 0.0056 | 0.0010 | 0.0 |
|
126 |
+
| 2.9407 | 0.2 | 40 | 2.3892 | 0.0977 | 0.1428 | 0.6529 | nan | 0.7944 | 0.9095 | 0.0015 | 0.0004 | 0.0015 | nan | 0.0000 | 0.0 | 0.0029 | 0.4578 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.6666 | 0.0 | 0.0090 | 0.0 | 0.0 | nan | 0.0 | 0.0003 | 0.0 | 0.0 | 0.9809 | 0.0001 | 0.7443 | 0.0 | 0.0002 | 0.0008 | 0.0 | 0.0 | 0.4524 | 0.7526 | 0.0013 | 0.0003 | 0.0015 | 0.0 | 0.0000 | 0.0 | 0.0029 | 0.4135 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.4316 | 0.0 | 0.0085 | 0.0 | 0.0 | nan | 0.0 | 0.0003 | 0.0 | 0.0 | 0.5305 | 0.0001 | 0.7265 | 0.0 | 0.0002 | 0.0008 | 0.0 |
|
127 |
+
| 2.548 | 0.3 | 60 | 2.1416 | 0.1163 | 0.1564 | 0.6823 | nan | 0.7335 | 0.9336 | 0.0004 | 0.0009 | 0.0021 | nan | 0.0 | 0.0 | 0.0 | 0.6875 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8169 | 0.0 | 0.0109 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9771 | 0.0554 | 0.7873 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.4575 | 0.7461 | 0.0004 | 0.0009 | 0.0021 | nan | 0.0 | 0.0 | 0.0 | 0.5870 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5082 | 0.0 | 0.0108 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5896 | 0.0550 | 0.7637 | 0.0 | 0.0 | 0.0002 | 0.0 |
|
128 |
+
| 2.0998 | 0.4 | 80 | 1.9659 | 0.1286 | 0.1704 | 0.7058 | nan | 0.7787 | 0.9334 | 0.0000 | 0.0001 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.7274 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8594 | 0.0 | 0.0069 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9643 | 0.3080 | 0.8732 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.4742 | 0.7686 | 0.0000 | 0.0001 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.6040 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5211 | 0.0 | 0.0068 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6503 | 0.2984 | 0.7912 | 0.0 | 0.0 | 0.0000 | 0.0 |
|
129 |
+
| 1.9886 | 0.5 | 100 | 1.8620 | 0.1292 | 0.1707 | 0.7068 | nan | 0.8207 | 0.9258 | 0.0 | 0.0000 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6582 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8540 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9666 | 0.3605 | 0.8740 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.4776 | 0.7811 | 0.0 | 0.0000 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.5764 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5022 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6580 | 0.3531 | 0.7829 | 0.0 | 0.0 | 0.0000 | 0.0 |
|
130 |
+
| 1.7382 | 0.6 | 120 | 1.7216 | 0.1316 | 0.1728 | 0.7127 | nan | 0.7315 | 0.9586 | 0.0 | 0.0034 | 0.0011 | nan | 0.0 | 0.0 | 0.0 | 0.7762 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8834 | 0.0 | 0.0023 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9507 | 0.3498 | 0.8714 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4817 | 0.7575 | 0.0 | 0.0034 | 0.0011 | nan | 0.0 | 0.0 | 0.0 | 0.6358 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5209 | 0.0 | 0.0023 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6836 | 0.3412 | 0.7841 | 0.0 | 0.0 | 0.0 | 0.0 |
|
131 |
+
| 1.796 | 0.7 | 140 | 1.6579 | 0.1395 | 0.1820 | 0.7278 | nan | 0.8098 | 0.9548 | 0.0 | 0.0015 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.8423 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8210 | 0.0 | 0.0019 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9476 | 0.5269 | 0.9178 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4949 | 0.7711 | 0.0 | 0.0015 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6303 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5644 | 0.0 | 0.0019 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7109 | 0.5046 | 0.7848 | 0.0 | 0.0 | 0.0 | 0.0 |
|
132 |
+
| 1.7154 | 0.8 | 160 | 1.5859 | 0.1430 | 0.1852 | 0.7305 | nan | 0.8789 | 0.9173 | 0.0 | 0.0269 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.7923 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9148 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9430 | 0.5814 | 0.8701 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5088 | 0.7927 | 0.0 | 0.0269 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.6391 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5247 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7262 | 0.5517 | 0.8041 | 0.0 | 0.0 | 0.0 | 0.0 |
|
133 |
+
| 1.7287 | 0.9 | 180 | 1.4827 | 0.1507 | 0.1914 | 0.7471 | nan | 0.8611 | 0.9539 | 0.0 | 0.0168 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.8329 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8750 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9494 | 0.7283 | 0.9041 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5268 | 0.7957 | 0.0 | 0.0168 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.6465 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5805 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7341 | 0.6741 | 0.8460 | 0.0 | 0.0 | 0.0 | 0.0 |
|
134 |
+
| 1.7761 | 1.0 | 200 | 1.4371 | 0.1462 | 0.1888 | 0.7395 | nan | 0.8871 | 0.9276 | 0.0 | 0.1441 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.8294 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8938 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9572 | 0.4822 | 0.9179 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5213 | 0.8143 | 0.0 | 0.1435 | 0.0013 | nan | 0.0 | 0.0 | 0.0 | 0.6415 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5569 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7003 | 0.4663 | 0.8340 | 0.0 | 0.0 | 0.0 | 0.0 |
|
135 |
+
| 1.3667 | 1.1 | 220 | 1.3822 | 0.1581 | 0.1972 | 0.7497 | nan | 0.7334 | 0.9680 | 0.0 | 0.3107 | 0.0039 | nan | 0.0 | 0.0 | 0.0 | 0.8475 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9153 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9467 | 0.6836 | 0.9024 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5388 | 0.7608 | 0.0 | 0.3052 | 0.0039 | nan | 0.0 | 0.0 | 0.0 | 0.6523 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5660 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7450 | 0.6425 | 0.8458 | 0.0 | 0.0 | 0.0 | 0.0 |
|
136 |
+
| 1.4033 | 1.2 | 240 | 1.3556 | 0.1607 | 0.2017 | 0.7601 | nan | 0.8631 | 0.9523 | 0.0 | 0.2805 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.8582 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8912 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9393 | 0.7424 | 0.9249 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5498 | 0.8023 | 0.0 | 0.2776 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.6621 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5761 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7566 | 0.6899 | 0.8241 | 0.0 | 0.0 | 0.0 | 0.0 |
|
137 |
+
| 1.2975 | 1.3 | 260 | 1.2957 | 0.1662 | 0.2062 | 0.7674 | nan | 0.8769 | 0.9483 | 0.0 | 0.4108 | 0.0040 | nan | 0.0 | 0.0 | 0.0 | 0.8624 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8958 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9524 | 0.7475 | 0.8975 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5783 | 0.8042 | 0.0 | 0.3990 | 0.0040 | nan | 0.0 | 0.0 | 0.0 | 0.6652 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5960 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7384 | 0.6849 | 0.8452 | 0.0 | 0.0 | 0.0 | 0.0 |
|
138 |
+
| 1.113 | 1.4 | 280 | 1.2796 | 0.1656 | 0.2069 | 0.7657 | nan | 0.8637 | 0.9449 | 0.0 | 0.4093 | 0.0061 | nan | 0.0 | 0.0 | 0.0 | 0.8670 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9372 | 0.7764 | 0.9027 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5655 | 0.8067 | 0.0 | 0.3983 | 0.0061 | nan | 0.0 | 0.0 | 0.0 | 0.6548 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5752 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7586 | 0.7044 | 0.8286 | 0.0 | 0.0 | 0.0 | 0.0 |
|
139 |
+
| 1.7147 | 1.5 | 300 | 1.2507 | 0.1668 | 0.2087 | 0.7667 | nan | 0.8655 | 0.9449 | 0.0 | 0.4471 | 0.0048 | nan | 0.0 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8873 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9354 | 0.8027 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5655 | 0.8025 | 0.0 | 0.4325 | 0.0048 | nan | 0.0 | 0.0 | 0.0 | 0.6591 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5780 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7601 | 0.7135 | 0.8216 | 0.0 | 0.0 | 0.0 | 0.0 |
|
140 |
+
| 1.1053 | 1.6 | 320 | 1.2350 | 0.1700 | 0.2099 | 0.7722 | nan | 0.8514 | 0.9543 | 0.0 | 0.5427 | 0.0056 | nan | 0.0 | 0.0 | 0.0 | 0.8614 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9112 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9497 | 0.7398 | 0.9009 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5979 | 0.8056 | 0.0 | 0.5147 | 0.0056 | nan | 0.0 | 0.0 | 0.0 | 0.6636 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5773 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7483 | 0.6837 | 0.8413 | 0.0 | 0.0 | 0.0 | 0.0 |
|
141 |
+
| 1.3557 | 1.7 | 340 | 1.2256 | 0.1719 | 0.2120 | 0.7752 | nan | 0.8411 | 0.9606 | 0.0 | 0.5856 | 0.0061 | nan | 0.0 | 0.0 | 0.0 | 0.8698 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9108 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9414 | 0.7539 | 0.9156 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6089 | 0.8026 | 0.0 | 0.5413 | 0.0061 | nan | 0.0 | 0.0 | 0.0 | 0.6642 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5751 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7607 | 0.6986 | 0.8415 | 0.0 | 0.0 | 0.0 | 0.0 |
|
142 |
+
| 1.3048 | 1.8 | 360 | 1.2099 | 0.1703 | 0.2117 | 0.7737 | nan | 0.8851 | 0.9445 | 0.0 | 0.5409 | 0.0070 | nan | 0.0 | 0.0 | 0.0 | 0.8833 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8912 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9490 | 0.7532 | 0.9186 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5898 | 0.8161 | 0.0 | 0.5117 | 0.0070 | nan | 0.0 | 0.0 | 0.0 | 0.6544 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5863 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7508 | 0.6953 | 0.8357 | 0.0 | 0.0 | 0.0 | 0.0 |
|
143 |
+
| 1.5497 | 1.9 | 380 | 1.2042 | 0.1706 | 0.2118 | 0.7739 | nan | 0.8855 | 0.9442 | 0.0 | 0.5205 | 0.0071 | nan | 0.0 | 0.0 | 0.0 | 0.8739 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8967 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9486 | 0.7810 | 0.9176 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5865 | 0.8165 | 0.0 | 0.4976 | 0.0071 | nan | 0.0 | 0.0 | 0.0 | 0.6595 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5865 | 0.0 | 0.0012 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7524 | 0.7122 | 0.8413 | 0.0 | 0.0 | 0.0 | 0.0 |
|
144 |
+
| 1.3084 | 2.0 | 400 | 1.1999 | 0.1706 | 0.2116 | 0.7740 | nan | 0.8915 | 0.9438 | 0.0 | 0.5087 | 0.0048 | nan | 0.0 | 0.0 | 0.0 | 0.8715 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9030 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.7861 | 0.9161 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5823 | 0.8174 | 0.0 | 0.4884 | 0.0048 | nan | 0.0 | 0.0 | 0.0 | 0.6619 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5862 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7592 | 0.7159 | 0.8430 | 0.0 | 0.0 | 0.0 | 0.0 |
|
145 |
+
|
146 |
+
|
147 |
+
### Framework versions
|
148 |
+
|
149 |
+
- Transformers 4.48.0
|
150 |
+
- Pytorch 2.1.1+cu118
|
151 |
+
- Datasets 3.2.0
|
152 |
+
- Tokenizers 0.21.0
|
config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/segformer-b1-finetuned-ade-512-512",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "flat-road",
|
33 |
+
"2": "flat-sidewalk",
|
34 |
+
"3": "flat-crosswalk",
|
35 |
+
"4": "flat-cyclinglane",
|
36 |
+
"5": "flat-parkingdriveway",
|
37 |
+
"6": "flat-railtrack",
|
38 |
+
"7": "flat-curb",
|
39 |
+
"8": "human-person",
|
40 |
+
"9": "human-rider",
|
41 |
+
"10": "vehicle-car",
|
42 |
+
"11": "vehicle-truck",
|
43 |
+
"12": "vehicle-bus",
|
44 |
+
"13": "vehicle-tramtrain",
|
45 |
+
"14": "vehicle-motorcycle",
|
46 |
+
"15": "vehicle-bicycle",
|
47 |
+
"16": "vehicle-caravan",
|
48 |
+
"17": "vehicle-cartrailer",
|
49 |
+
"18": "construction-building",
|
50 |
+
"19": "construction-door",
|
51 |
+
"20": "construction-wall",
|
52 |
+
"21": "construction-fenceguardrail",
|
53 |
+
"22": "construction-bridge",
|
54 |
+
"23": "construction-tunnel",
|
55 |
+
"24": "construction-stairs",
|
56 |
+
"25": "object-pole",
|
57 |
+
"26": "object-trafficsign",
|
58 |
+
"27": "object-trafficlight",
|
59 |
+
"28": "nature-vegetation",
|
60 |
+
"29": "nature-terrain",
|
61 |
+
"30": "sky",
|
62 |
+
"31": "void-ground",
|
63 |
+
"32": "void-dynamic",
|
64 |
+
"33": "void-static",
|
65 |
+
"34": "void-unclear"
|
66 |
+
},
|
67 |
+
"image_size": 224,
|
68 |
+
"initializer_range": 0.02,
|
69 |
+
"label2id": {
|
70 |
+
"construction-bridge": 22,
|
71 |
+
"construction-building": 18,
|
72 |
+
"construction-door": 19,
|
73 |
+
"construction-fenceguardrail": 21,
|
74 |
+
"construction-stairs": 24,
|
75 |
+
"construction-tunnel": 23,
|
76 |
+
"construction-wall": 20,
|
77 |
+
"flat-crosswalk": 3,
|
78 |
+
"flat-curb": 7,
|
79 |
+
"flat-cyclinglane": 4,
|
80 |
+
"flat-parkingdriveway": 5,
|
81 |
+
"flat-railtrack": 6,
|
82 |
+
"flat-road": 1,
|
83 |
+
"flat-sidewalk": 2,
|
84 |
+
"human-person": 8,
|
85 |
+
"human-rider": 9,
|
86 |
+
"nature-terrain": 29,
|
87 |
+
"nature-vegetation": 28,
|
88 |
+
"object-pole": 25,
|
89 |
+
"object-trafficlight": 27,
|
90 |
+
"object-trafficsign": 26,
|
91 |
+
"sky": 30,
|
92 |
+
"unlabeled": 0,
|
93 |
+
"vehicle-bicycle": 15,
|
94 |
+
"vehicle-bus": 12,
|
95 |
+
"vehicle-car": 10,
|
96 |
+
"vehicle-caravan": 16,
|
97 |
+
"vehicle-cartrailer": 17,
|
98 |
+
"vehicle-motorcycle": 14,
|
99 |
+
"vehicle-tramtrain": 13,
|
100 |
+
"vehicle-truck": 11,
|
101 |
+
"void-dynamic": 32,
|
102 |
+
"void-ground": 31,
|
103 |
+
"void-static": 33,
|
104 |
+
"void-unclear": 34
|
105 |
+
},
|
106 |
+
"layer_norm_eps": 1e-06,
|
107 |
+
"mlp_ratios": [
|
108 |
+
4,
|
109 |
+
4,
|
110 |
+
4,
|
111 |
+
4
|
112 |
+
],
|
113 |
+
"model_type": "segformer",
|
114 |
+
"num_attention_heads": [
|
115 |
+
1,
|
116 |
+
2,
|
117 |
+
5,
|
118 |
+
8
|
119 |
+
],
|
120 |
+
"num_channels": 3,
|
121 |
+
"num_encoder_blocks": 4,
|
122 |
+
"patch_sizes": [
|
123 |
+
7,
|
124 |
+
3,
|
125 |
+
3,
|
126 |
+
3
|
127 |
+
],
|
128 |
+
"reshape_last_stage": true,
|
129 |
+
"semantic_loss_ignore_index": 255,
|
130 |
+
"sr_ratios": [
|
131 |
+
8,
|
132 |
+
4,
|
133 |
+
2,
|
134 |
+
1
|
135 |
+
],
|
136 |
+
"strides": [
|
137 |
+
4,
|
138 |
+
2,
|
139 |
+
2,
|
140 |
+
2
|
141 |
+
],
|
142 |
+
"torch_dtype": "float32",
|
143 |
+
"transformers_version": "4.48.0"
|
144 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aae8bac78689dddb79a2047c506b4c7e50fcd481af2bf977b2a39963b5ef7102
|
3 |
+
size 54771308
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_reduce_labels": false,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "SegformerFeatureExtractor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 2,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 512,
|
21 |
+
"width": 512
|
22 |
+
}
|
23 |
+
}
|
runs/Jan21_05-14-20_jupyter-demo08/events.out.tfevents.1737436491.jupyter-demo08.501.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fca3c95b9b2d7808614a8ca53accdcc40a553948e3237dbc6f5823aa5785df47
|
3 |
+
size 191164
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8380086b0cf0db623f647693dccb352024cfbfece8f5c058c3b3a280e187a55f
|
3 |
+
size 5368
|