File size: 1,265 Bytes
f49528d
fe831ba
 
 
 
 
 
 
 
 
 
f49528d
 
fe831ba
 
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
f49528d
fe831ba
 
 
 
 
 
 
 
 
 
 
f49528d
fe831ba
f49528d
 
 
fe831ba
f49528d
fe831ba
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/Phi-3-mini-128k-instruct
model-index:
- name: SFTCodePhi-3-mini-128k-py
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SFTCodePhi-3-mini-128k-py

This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 2000

### Training results



### Framework versions

- PEFT 0.11.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1