File size: 2,451 Bytes
af7131b 8b9b975 af7131b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: facebook/convnextv2-large-1k-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: convnextv2-large-1k-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnextv2-large-1k-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled
This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0398
- Accuracy: 0.9882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.9
- num_epochs: 14
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.5059 | 1.0 | 199 | 0.9001 | 0.4826 |
| 0.2533 | 2.0 | 398 | 0.9515 | 0.2124 |
| 0.2358 | 3.0 | 597 | 0.9538 | 0.1543 |
| 0.2584 | 4.0 | 796 | 0.9642 | 0.1136 |
| 0.1085 | 5.0 | 995 | 0.9746 | 0.0891 |
| 0.1007 | 6.0 | 1194 | 0.9769 | 0.0725 |
| 0.1463 | 7.0 | 1393 | 0.9840 | 0.0541 |
| 0.3564 | 8.0 | 1592 | 0.9802 | 0.0880 |
| 0.0957 | 9.0 | 1791 | 0.9656 | 0.1375 |
| 0.1481 | 10.0 | 1990 | 0.0511 | 0.9873 |
| 0.1536 | 11.0 | 2189 | 0.0827 | 0.9713 |
| 0.0458 | 12.0 | 2388 | 0.0398 | 0.9882 |
| 0.4956 | 13.0 | 2587 | 0.3474 | 0.8643 |
| 0.0801 | 14.0 | 2786 | 0.0850 | 0.9797 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|