--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_UKcitizen2021 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_UKcitizen2021") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 11 * Number of training documents: 721
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | lockdown - wef - monkeypox - agenda - nuremberg | 22 | -1_lockdown_wef_monkeypox_agenda | | 0 | vaccinated - pfizer - vaxx - worldcouncilforhealth - injections | 313 | 0_vaccinated_pfizer_vaxx_worldcouncilforhealth | | 1 | ukcitizen2021 - amendments - supranational - pandemic - wgihr | 89 | 1_ukcitizen2021_amendments_supranational_pandemic | | 2 | constable - arrested - victims - allegations - thamesvalley | 73 | 2_constable_arrested_victims_allegations | | 3 | bbc - matt - tomorrow - southampton - everywhere | 51 | 3_bbc_matt_tomorrow_southampton | | 4 | vaccines - mhra - parliamentary - claims - chope | 42 | 4_vaccines_mhra_parliamentary_claims | | 5 | ukcitizen2021 - councils - mobilise - responses - nottinghamshire | 35 | 5_ukcitizen2021_councils_mobilise_responses | | 6 | ivermectin - hydroxychloroquine - quercetin - iodine - denied | 26 | 6_ivermectin_hydroxychloroquine_quercetin_iodine | | 7 | solicitors - mhra - regulatory - bayliss - allegations | 25 | 7_solicitors_mhra_regulatory_bayliss | | 8 | vaccination - nhs - consent - compulsory - jobsnotjabs | 23 | 8_vaccination_nhs_consent_compulsory | | 9 | digital - controligarchs - england - passport - currency | 22 | 9_digital_controligarchs_england_passport |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12